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ABSTRACT

The International Satellite Geodesy Experiment (ISAGEX) has completed the data
acquisition phase. This report describes the contributions and methods of the
Smithsonian Astrophysical Observatory to the program. The report will provide users
of the data with necessary supporting information. A sequel will be prepared when the
analysis of the ISAGEX is completed.
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INTRODUCTION

E. M. Gaposchkin

The ISAGEX program is the third in a series of cooperative satellite-tracking
campaigns. The first in 1967 and the second in 1968, organized by SAO, were
primarily camera tracking programs. There were, respectively, four and five laser
tracking instruments operating during those intervals. Where possible, the tracking
schedules were established to accommodate these systems. In 1967, there were five
satellites and in 1968, there were six satellites suitably equipped with corner reflec-
tors. However, three of them were in almost identical orbital configurations, so for

some purposes the number was, in reality, three and four.

ISAGEX was initiated in 1969 by the French CNES with its '""Proposition for an
International Laser and Photographic Observation Campaign on Satellites Equipped
with Laser Reflectors.'" ISAGEX took on added importance with the increased num-
ber of laser systems (10) and of precision satellite-tracking cameras (30) and the
launch of a seventh retroreflector satellite (Peole), by France.

There are many purposes of a tracking campaign, and the archives of data will
be useful for applications not envisaged at the inception of the program. The
cooperating groups proposed the following three broad objectives, which gave shape

to the program:

A. To organize a well-coordinated tracking campaign of the seven satellites
equipped with laser retroreflectors in such a way that its contribution to our knowledge

of the gravity field of the earth and other geodetic parameters will be significant.

B. To collect the set of observations made by the different participating agencies
and to make those data available to the scientific community with all information

necessary for use in computations.



C. To further research and development of instrumentation and operations of

high-precision tracking systems for future space experiments.

ISAGEX is primarily a program of coordinated observations and data exchange.
The data are to be distributed to all participants as per ‘the operations plan, and
subsequent analysis is largely at the option of the individual agencies. The analysis
objectives of the participants and others are given in the International Satellite Geodesy
Experiment Plan, published by CNES on November 10, 1970.

The planning and execution of the program has been documented in several CNES
reports. The program ran from January through August 1971 and, broadly speaking,
all the objectives were met. The data reduction has been completed for the laser
data, which have been forwarded to the CNES data bank. The reduction of photographic
observations is now under way. Therefore, the first objective and part of the second

have been achieved.

The purpose of this report is to describe SAO's experience and methods. Included
are the information necessary to use the laser data and descriptions of the observing
system, the calibration methods, the reduction methods, and the process of data vali-
dation. In addition, there is a discussion of the various aspects of data acquisition.

We hope that with such a document, improvement of the data systems will be furthered.
We have concentrated on the technological and operations aspects of ISAGEX and on laser
tracking in general. Within the next year, a sequel will be prepared, on the scientific
results to come from the ISAGEX data. Some results already in hand are reported here

and elsewhere (Gaposchkin, Kozai, Veis, and Weiffenbach, 1971).

There were substantial objectives for camera observations during the campaign.
Since the SAO Baker-Nunn data have already been discussed in considerable detail,

this report is restricted to the SAO laser systems.

In addition to the above objectives, ISAGEX was a test bed. We have seen how
successfully a multinational observing program can be carried out. This success,
in the absence of any more than informal agreements, is due to the good faith and

mutual interest of all parties concerned. This soxt of cooperation is'enormously



important for the future. With scientific objectives becoming ever more ambitious,
the requirements for tracking data become more demanding. It is apparent that
several groups pooling resources can achieve much more than can individuals alone.
The fﬁture programs of all groups will be materially advanced by such cooperation,

and it can even be argued that some programs are not feasible without it.

SAO agreed to participate with laser units that were in the process of construction.
The fielding of these units and their subsequent operation taxed the resourcefulness of
the whole organization. Indeed, it had to be considered an experiment to see whether
such a program of fabrication, field installation, and immediate data acquisition in
amounts and with a necessary precision could even be accomplished. The statistics

attest to the increased volume of data as the program progressed.

ISAGEX was used as a period for improvement of the accuracy and reliability of
the laser network under routine field operation. We faced the difficulties of repairing
malfunctions and detecting operating problems while the observing program was
continuing. This was a completely different situation from operating one or two systems,
under essentially laboratory conditions, with all SAO technical personnel available at
a domestic site. We had a mixed record as a result. Some problems slipped through
the system until the validation process. Needless to say, the system has since been
modified. In addition, studies were begun to improve the system's accuracy. Photo-
graphing the oscilloscope waveform for centroid detection was attempted on a routine
basis. Analysis of these data is in progress, and preliminary results are reported
here. This experiment will lead to improved signal detection and analysis in future

operation.

ISAGEX was intended to provide a framework for individual agencies developing
laser tracking to take data in an organized program. They could have routine predic-
tions and an immediate evaluation of their data. This situation is very helpful
for new systems. In the final accounting, only a few such new systems participated.
However, they did have the benefits described, although on the whole, the data taken
were too few to be geodetically significant. These systems have been in operation, and
we hope they will be able to participate in a more substantial way during future pro-
grams such as EPSOC, currently being conducted by SAO.



The ISAGEX program has ushered in a new era of cooperative tracking programs.
We have every indication that the laser data taken are of 1-m accuracy with 60-cm
noise. We have good confirmation of the 10-m accuracy of our current geodetic tools,

as well as the very real opportunity to obtain 1-m geodesy using these and other data.

Everyone at SAO and many individuals at CNES, NASA, and other organizations
contributed in a substantial way. It is impossible to acknowledge them all. The
contributors of this report join me in expressing our gratitude to these people. The

program has achieved what it has only through such cooperation.
REFERENCE
GAPOSCHKIN, E. M., KOZAI, Y., VEIS, G., and WEIFFENBACH, G.

1971. Geodetic studies at the Smithsonian Astrophysical Observatory. Presented
at the XVth IUGG General Assembly, Moscow, August.



- SAO NETWORK DESCRIPTION
J. M. Thorp and M. A. Bush

Fifteen years ago, SAO conceived the idea of a worldwide network of photographic
observing stations to track the artificial satellites proposed for the International
Geophysical Year (IGY). Since the United States planned to launch its IGY satellites
from Cape Kennedy into orbits with low inclinations, the original locations of the
astrophysical observing stations were selected to obtain the best practical coverage
of such orbits. Later, the low-latitude network configuration was modified to recog-
nize the existence and importance of high-inclination satellites, which allow analysis

of atmospheric and geodetic conditions at high latitude.

The ISAGEX network configuration is depicted in Figure 1, showing the locations
of 11 astrophysical observing stations and the station in Dakar, Senegal, which was
operated in cooperation with CNES. Each site is equipped with a Baker-Nunn tracking
camera and a highly precise timing system. In addition, five stations have been
augmented with laser ranging systems. Table 1 lists the COSPAR number and the
location of the sites used in the ISAGEX program.

Figure 2 shows the Baker-Nunn camera at San Fernando, Spain, and Figure 3,

the new SAO laser ranging system at Natal, Brazil.

The Baker-Nunn camera is a modified Super-Schmidt £/1, of 500-mm focal length
(20 inches) and 500-mm aperture. A pyrex spherical mirror 760 mm (30 inches)
in diameter and three corrector elements, two positive and one negative, constitute
the optics, designed by J. G. Baker. The focal surface is approximately spherical,
and the film is stretched under tension on a specially designed pyrex spherical sur-
face. The field is 30° along the tracking axis and 5° along the perpendicular one.
When the satellite position is fairly well known, the field along the tracking axis can

be reduced to 15° resulting in a considerable savings in film usage.
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Figure 3. The new SAO laser ranging system at Natal, Brazil.



Table 1. Sites used in the ISAGEX program.

Station
COSPAR

Location number Equipment
San Fernando, Spain 9004 Baker-Nunn
Naini Tal, India 9006 Baker-Nunn
Maui, Hawaii 9012 Baker-Nunn
Mt. Hopkins, Arizona 9021 Baker-Nunn
Mt. Hopkins, Arizona 7921 Laser
Olifantsfontein, South Africa 9022 Baker-Nunn
Olifantsfontein, South Africa 7902 Laser
Island Lagoon, Australia 9023 Baker-Nunn
Dodaira, Japan 9025 Baker-Nunn
Arequipa, Peru 9027 Baker-Nunn
Arequipa, Peru 7907 Laser
Debre Zeit, Ethiopia 9028 Baker-Nunn
Dionysos, Greece 9030 Baker-Nunn
Dionysos, Greece 7930 Laser
Natal, Brazil 9039 Baker-Nunn
Natal, Brazil 7929 Laser
Dakar, Senegal 9020 Baker-Nunn
Dakar, Senegal 7820 Laser

The standard film is Kodak Royal-X pan-recording 2475 (extended red) emulsion
on a 4-mm estar base. The scale on the film is 2.46 p arcsec-l, and 80% of the light
is placed on a 20-p~diameter disk. The camera can photograph stars of 14th mag

with a 20-sec exposure. A barrell-type shutter, rotating in front of the focal surface



at a precise angular velocity, chops the trails of the stars (or of the satellites, if the
camera is stationary) and provides the breaks that are used as references for the
reduction of the film. The shutter (or chopper) rotates five times, making five breaks
per exposure. When the shutter is in the middle of the central break, an electrical
contact strobes a flashing tube that records the time from a slave clock in the camera.
Time is thus recorded on the same film on which the satellite and stars appear.

With the use of a phase shifter, the shutter can be synchronized to time signals so as
to produce the middle of the central break at a predetermined time. This method can
be used to perform simultaneous observations from several stations whose shutters

are in full synchronization.

The Baker-Nunn can be operated in two basic modes, stationary and tracking.
In the first, more simple mode, the camera is held stationary while the images of
the satellite trail along the film. In the tracking mode, the body of the camera is
driven at the same rate as the apparent angular velocity of the satellite, holding the

image of the satellite to a point of light on the film.

The precision timing system is composed of an EECo clock that utilizes a 5-MHz
Sulzer crystal oscillator as its frequency standard, a high-frequency receiver to
monitor the WWV signal, and a VLF receiver. The VLF receiver monitors the very
accurate frequency tones transmitted by various VLF stations around the world. The
frequency of the crystal oscillator is continuously compared with these frequency
tones, and the difference is displayed on both a chart recorder and an accumulated
time-deviation counter. The oscillator can therefore be adjusted periodically by
means of a tuning capacitor. As a further aid to more accurate timekeeping, a
portable clock is carried from station to station to measure the relative settings of
the clocks. Timing to within 100 psec is routinely achieved at all camera stations.
At the laser sites, timing is maintained to within 50 psec, an accuracy necessary

for laser ranging.

Since 1966, SAO has been improving the accuracy of its tracking technique by
installing laser tracking systems at several of its camera locations. The Baker-Nunn
provides very accurate directional data, and the laser provides the added dimension

of range or the accurate determination of a satellite's height above the earth. The
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increased accuracy of the Smithsonian tracking program as a result of the addition of

lasers has innumerable research benefits.

SAO currently operates five laser tracking systems collocated with Baker-Nunn
cameras at tracking stations in Mt. Hopkins, Arizona; Natal, Brazil; Arequipa, Peru;
Olifantsfontein, South Africa; and Athens, Greece. With the exception of the last,
which was assembled and operated in cooperation with the NTU of Athens, all systems
were designed and built to SAO specifications and represent near state~of-the-art

ruby-laser technology.

The following characteristics apply to the four systems operated by SAO: The
type is ruby Q-switched; the peak power is 400 Mw; the pulse width is 18 nsec; the
energy output is 7 J; the maximum pulse repetition rate is 4 pulses min-l; the beam
divergence can be varied from 0.5 to 6 mrad (or from 2 to 20 arcmin); the pointing
is automatic-static, which permits day and night ranging and does not require that
the satellite be sunlit; and the range resolution of the counter is 1 nsec. The laser
transmitter utilizes two ruby rods, one for the oscillator and one from the amplifier
stage. The rods are stimulated by the discharge of xenon high-voltage lamps. At
lasing, some of the output energy is sampled by a photodetector that triggers the
range measuring counter. The pulse, after traveling in space from the transmitter
to the satellite, is reflected back from the retroreflectors mounted on the spacecraft
and is focused by a 20-inch Cassegrain telescope onto a photomultiplier tube. The
signal generated by the photomultiplier stops the counter, which then displays the

elapsed time.

One of the problems encountered in laser ranging is the variation in signal
strength of the pulse reflected from the satellite. This variation is due in part to the
fact that the signal varies inversely as the fourth power of the satellite range and in
part to an observed "scintillation, ' or random effect. The variations in signal
strength affect the range measurements. As we said, satellite range is obtained from
a time-interval counter that is started by the transmitted pulse and stopped by the
receiving pulse. The resolution of the counter is 1 nsec, but the duration of the pulse
is 18 nsec. Hence, the counter reading changes significantly if it stops at different

points on the pulse's leading edge. The counter stops when it reaches a threshold

11



that has been set near the half-amplitude point of a weak return pulse. Since the
system is calibrated for such a pulse and setting, errors are introduced when the
return pulse varies from its average value. These errors, however, can be corrected
if a photograph of each return pulse displayed on an oscilloscope is obtained. An
automatic recording system capable of doing this for every pulse has been devised and
is currently being field-tested. This correction can reduce the error in range

measurements to 1 ft or less.

12



DESCRIPTION OF THE SAO LASER SYSTEM CURRENTLY DEPLOYED
IN BRAZIL, PERU, AND SOUTH AFRICA

P. W. Sozanski
The main components of SAO's laser system are the laser transmitter, the static-

pointing pedestal, the telescope photoreceiver, the data system, and the epoch timing

system (see Figure 1).

105-053

LASER
COOLING UNIT
RANGE
COUNTER START
SIGNAL
LASER
»1 ELECTRONICS

LASER TRANSMITTER HEAD

PEDESTAL
»| ELECTRONICS »| PEDESTAL

PMT | TELESCOPE PHOTORECEIVER

RANGE

COUNTER STOP
SIGNAL

DATA )
L 5| svsTem
T A SATELLITE PReDICTIONS

EPOCH TIMING
SYSTEM

Figure 1. Laser ranging system.
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To describe the operation of the laser system in simple terms, the laser trans-
mitter head and the telescope photoreceiver are pointed by the static-pointing pedestal
(see Figure 2) to the altitude and azimuth coordinates in accordance with predictions
generated in Cambridge. The laser is then pulsed, under electronic or manual control,
at the appropriate epoch, and a very short pulse of monochromatic light in a narrow
beam is projected from the laser transmitter head toward the satellite. The trans-
mitted pulse is detected at the transmitter by a photodiode whose output is an elec-
trical pulse that starts the range interval counter and reads out the station clock to
mark epoch. The light is reflected back from the satellite by its cube-corner reflec-
tors and is detected photoelectrically by the telescope photoreceiver whose output is
an electrical pulse that stops the range interval counter. The range from the laser
system to the satellite is then calculated from the elapsed time, with due corrections

for atmospheric and other effects.
Procurement started in early 1969, and the systems were fielded in late 1970.
A detailed description of the SAO laser system components follows:
1. LASER TRANSMITTER

The laser transmitter was purchased in March 1969 from:

Spacerays, Inc.

Northwest Industrial Park
Burlington, Massachusetts 01803
(617)272-6220

The system is a flash-pumped, Q-switched ruby system with an oscillator and one
amplifier stage. The output is a 4- to 5-J pulse 18 nsec wide. The beam is collimated
with a Galilean telescope with an aperture of 12. 7-cm diameter, the beam divergence
~ is variable from 0.3 to 6.0 mrad (measured at full width, half-power points), the

repétition rate is 4 ppm, and the wavelength of the output is 694 nm.

The laser transmitter system consists of three major units: the laser transmitter

head, the power supply and control electronic units, and the cooling unit.

14
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Figure 2. Laser transmitter head (right) and telescope photoreceiver (left) mounted
on static-pointing pedestal.
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2. PEDESTAL

The pedestal was purchased in May 1969 from:

Tinsley Laboratories, Inc.
2448 Sixth Street

Berkeley, California 94710
(415)843-6836

This pedestal is a static-pointing, open-loop unit of an altitude-over-azimuth
biaxial configuration. Its overall accuracy is within 02008 (great circle error of

0.5 arcmin or less).

The pedestal is a static-pointing unit, i.e., it moves to a given pointing direction,
waits for the satellite to pass through that direction, and then moves on to the next

such static point.

The unit is of the open-loop type, i.e., it does not operate as a servomechanism
and does not require a feedback error signal. It relies instead on starting at a known
pointing direction of two orthogonal axes and on simple addition and subtraction of
known increments of motion about those axes to arrive at a new predetermined point-
ing direction. The known increments of motion are provided by reliable, precision,
incremental-stepping motors fed by precomputed number-of-steps input data. The
initial starting position is established by optical goniometers, and the continuous
addition and subtraction is maintained by solid-state arithmetic units, counting

registers, comparison logic circuitry, and visual displays.

The pedestal is positioned by manual decade-switch selection or by using a pre-

punched paper-tape input.
3. TELESCOPE PHOTORECEIVER
The telescope photoreceiver was purchased in May 1969 from several vendors

(see below). It contains three subsystems (see Figure 3). The first, the main sub-
system, contains two components, a 53-cm-diameter £f/4 paraboloidal primary and a

16



14. 6-cm-diameter flat secondary. The primary has at least a 50-cm-diameter clear
aperture and when combined with the secondary produces a field greater than 20 arcmin
in diameter, an overall accuracy of better than 1/4 wave; after aluminizing and SiO
overcoating, the primary has a minimum combined reflectance greater than 60%

between 400 and 700 nm.
=18
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Figure 3. Telescope photoreceiver.
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The second subsystem, the photomultiplier tube (PMT) optical subsystem, trans-
fers the beam reflected by the main optical system through its components and onto
the face of the PMT. The beam passes through a holder for a stack of gelatin filters,
then through a field lens that directs the beam through the field stop wheel containing
six apertures. These apertures are sized to produce fields of 2, 4, 8, 12, 16, and 20
arcmin in diameter. The diverging beam passes next through a collimating lens and
then through a tiltable interference filter, a final imaging lens, and onto the face of
the PMT. This system is designed to produce a 3.8-cm~diameter spot on the face of
the PMT independent of field stop settings.

The third subsystem, the auxiliary viewing subsystem, consists of 1/4-wave flat
flip mirror that, when inserted into the beam, directs the beam through the exit lenses
onto a front surface diagonal mirror that reflects the beam through an illuminated

reticle and out to the eyepiece for visual viewing.
A detailed breakdown of the photoreceiver is as follows:

Telescope. A 50-cm telescope is used to detect the laser return and was bought
from:
Tinsley Laboratories, Inc.
2448 Sixth Street

Berkeley, California 94710
(415)843-6836

Photomultiplier Tube. A RCA Model 7265, selected for a quantum efficiency of
4.5% or greater at 694 nm and a gain of 2 X lO7 or greater at 2400 v, is used to

trigger the counter. It was purchased from:

Radio Corporation of America
Industrial Tube Division

New Holland Pike

Lancaster, Pennsylvania 17604
(717)397-7661 '

18



Photomultiplier Tube Housing. A Products for Research Model PR 2100 (modified)
housing, used to hold the PMT, was purchased from:

Products for Research

78 Holten Street

Danvers, Massachusetts 01923
(617)774-3250

Interference Filters. A 20 A interference filter and a 7 & interference filter were
purchased from: ‘
Thin Films Products Division
Infra~Red Industries
80 4th Avenue

Waltham, Massachusetts 02154
(617)894-8410

4. DATA SYSTEM

The data system was purchased during the interval from March 1969 through
September 1970 from several vendors (see below). The system (Figure 4) consists
of the measurement instrumentation as well as the digital-control and data-handling
systems for the laser transmitter. The four functional subsystems are described

below.

Counter. An Eldorado ElectroData Model 796 (modified) counter with a 1-nsec
resolution is used to obtain the satellite range times. This unit was purchased from:
Eldorado ElectroData Corporation
601 Chalomar Road

Concord, California 94520
(415)686-4200

Oscilloscope. A Tektronix Type R454 oscilloscope with modification 163D and a

Tektronix Model C-40 oscilloscope camera are used to provide a means for visual
moniforing and photographic recording of the laser transmitter output and the laser
return pulses. The oscilloscope and camera were purchased from:

Tektronix, Inc.

P. O. Box 500

Beaverton, Oregon 97005
(503)644~0161

19
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Control System. In addition to providing the basic time-interval measurement for

satellite ranging, the laser data system must also record the observation epoch time
(system clock); program the operating sequence of the laser transmitter unit, the
pedestal, and the data system itself (tape reader, tape control, and laser control);
condition the stop channel and the return pulse (range-gate generator and amplifier
detector/monitor); and print out the digital data (intercoupler, digital printer, and
tape perforator). All the control-system components with the exception of the digital
printer and tape perforator were built by SAO. The digital printer and tape perforator
(Model ASR-32, modified by SAO) were purchased from:

The Teletype Corporation

5555 Touhy Avenue

Skokie, Illinois 60076
(312)982-2000

Racks, Power, and Cabling. A Western Devices rack and blower unit, used to

hold most of the data system, was purchased from:

Zero Manufacturing Company
1121 Chestnut Street
Burbank, California 91503
(213)849-5521

A Bud Radio Company Model 2707 Series 60 rack is used to hold the tape-reader
system and was purchased from:
Gerber Electronics
852 Providence Highway

Dedham, Massachusetts 02026
(617)329-2400

A General Radio Model 1581-ALR2 voltage regulator is used to supply regulated
AC power to the data system. It was purchased from;
General Radio Company
300 Baker Avenue

West Concord, Mas sachusetts 01781
(617)369-4400
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A Northeast Scientific regulated high-voltage power supply Model RQE-3001-21230
provides high voltage to the photomultiplier tube. It was purchased from:
Northeast Scientific Corporation
30 Wetherbee Street

Acton, Massachusetts 01720
(617)263-7706

5. EPOCH TIMING SYSTEM

The epoch timing systems, a Model ZA 34675 single-channel unit and a Model
ZA 34685 dual-channel unit, were purchased in March 1965 from:
Electronic Engineering Company of California
1601 East Chestnut Avenue

Santa Ana, California 92700
(714)547-5651

The EECo timing system (see Figure 5) is used to provide epoch. It has a dis-
play resolution of 10 psec and an electrical resolution of 1 psec. The single-channel
unit consists of a crystal oscillator, accumulator, oscilloscope, VLF receiver,
chart recorder, WWYV receiver, and a battery backup system. The dual-channel unit

consists of the above plus an additional crystal oscillator, accumulator, and VLF
receiver.
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Figure 5. Epoch timing system (EECo). Solid lines show single-channel unit, while
the dual-channel unit is represented by the solid lines and the dotted lines.
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CALIBRATION
C. R. H. Tsiang

The ranging accuracy of the laser system is calibrated through a procedure of
ranging on a fixed land-based target at a surveyed distance, generally on the order of
0.25 to 1 mi. A calculation can be made to obtain the expected range time based on
the surveyed distance and the atmospheric refractivity. Once an average range time
is obtained from a series of target measurements, it is possible to compute a calibra-
tion number T which can be reported along with the satellite range times. This
number covers delays in the range counter, cabling, telescope, output detector,
photomultiplier tube, and signal amplifier. It does not provide a means for obtaining
a calibration factor for atmospheric delays, but otherwise accounts for all components

in the range measuring path to and from the satellite.

The following formula can be used in computing the atmospheric refractivity N:

P e
';i:-ll.Q-T s

N = 80.29
where P is the measured barometric pressure (in millibars), e the partial pressure
of water vapor, and T the temperature (K). The calculation for two-way range time

has been based on

R
S

0.15

(1+NX 1078 +6.917% 1074

TS = )

where T is the calculated range time (nsec) for a surveyed distance of RS (m). After
noting that local temperature and pressure variations at any one location never change
N by more than +£10% and that the range equation gives subnanosecond variations in

T for such changes, we decided that fixed values of N could be determined for each
station. Rather than each station calculating its mean barometric pressure, we
prepared a chart, which gives a direct conversion from the station altitude above the
geoid in kilometers to values of N (see Figure 1).

' ﬁrecé_dingwpagéwhldnk
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Figure 1. Atmospheric refractivity as a function of station height for an ambient
temperature of 15°C at 6943 A.

The system-calibration number reported in word eight of the 33333 observation
message is obtained by subtracting the observed range time T from Ty the range

time calculated from the surveyed laser-to-target range:

The resulting system-calibration number T, is repbrted as a signed quantity, which
is added to all range measurements in the 33333 message. Generally, T is negative

in the SAO laser systems.

In theory, the calibration of the instrument should change only if its components
are changed, moved, or affected by environmental fluctuations or aging. By using
the whole system to range on a fixed land-based target, we hoped that all such factors
could be covered by the single system-calibration number. Attempts were made to simu-
late real operational conditions by regulating the pulse-repetition rate, photomultiplier-

tube voltage, counter thresholds, amplifier gain, return signal level, output power level,
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etc. Several unavoidable differences existed between the ranging measurements on
the satellites and those on the target — viz., corner cubes vs. nonspecular reflecting
surface of the target; small solid angle subtended by the satellite vs. full-beam
reflection by the target (8-ft X 8-ft wooden surface painted flat white); point-source
satellite image vs. off-axis, near-field reflection by the target; short air-path length
to ground-based target vs. full atmosphere to satellite, etc. None of these differences
is trivial, but for operation of the laser at the original design levels (0.5-m resolution

and 1-m accuracy), the calibration procedure and results appear to be satisfactory.

For the three stations with the new lasers, the variations in the reported cali-
bration number over the course of most of ISAGEX did not exceed 15 nsec. All the
new stations did experience some problems with calibration ranging when first set up,
but they were confined to the first week of operations and apparently were cleared up
by the beginning of the second ISAGEX period. For the most part, the variations in the

reported calibrations were due to the following:

A. Replacement or relocation of components in the laser head, photoreceiver,

or data system.
B. Readjustment of signal operating levels in the target-ranging procedure.

C. Readjusted survey figures for the laser-to-target distance.

Attempts at standardizing and improving the reliability of the calibration tests
were made throughout ISAGEX as more experience and knowledge of the instrumenta~-
tion was gained. During investigations into the error-reducing capabilities of photo-
graphically determined range-time corrections, certain observations led to the
establishment of procedures that would minimize the effects of variations in signal
level during target observations. These effects — the most detrimental ones for
satellite ranging — were reduced to a level so that the most significant systematic
error component of the calibration lay in the accuracy of the ground-survey informa-
tion. Therefore, where survey information was questionable, additional measure-

ments were made in an attempt to allow no more than a 4-cm error.
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Unfortunately, this has led to the establishment of more than one survey target
distance at two of the South American stations. Table 1 shows the results obtained
by local surveyors using conventional techniques. Note that certain sites have been
measured to greater resolution than others. Only where special comments are
included should this be considered significant. Ultimately, corrections will be
applied to all ISAGEX calibration data when the stations are resurveyed with a laser

geodimeter.

Apart from the systematic error contributed by the differences in survey results,
the net range-time uncertainty introduced by the calibration should generally be better
than +2 nsec. Photogfaphic reduction of pulse images offers the possibility of
decreasing the error to less than +1 nsec for many of the periods after May 1971.
Reduction of these photographic data and distribution of the results will be made in
1972.

Table 1. ISAGEX target range history: Effective dates of change to new values of
survey distance and refractivity constant N.

Station
COSPAR Date Survey distance  Refractivity
Location number (1971) (m) constant N

Arequipa, Peru 7907 January 5 313.135 250
October 1 312.844 250

Mt. Hopkins, Arizona 7921 January 5 776.329 172
Olifantsfontein, South Africa 7902 February 12 404. 48 290
Natal, Brazil 7929 January 5 316.08 248
' April 28 316.08 340

April 29 314.67 340

September 23 315.62 340

Dionysos, Greece 7930 January 5 327.25 0
April 9 327.973" 0

April 28 327.973 340

*
Measurement made by laser geodimeter.
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TIMING (EPOCH)
D. A. Arnold and J. M. Thorp

Epoch time is maintained at each station by use of the EECo precision time sys-
tem (see Thorp and Bush, this volume) and by reference to UTC(USNO). A portable
clock is used to set the station clock, which is then maintained by referencing the
frequency of a 5-MHz Sulzer oscillator to a known frequency, broadcast by one of the
various VLF stations. Each observing station maintains an estimate of its timing
uncertainty in two ways: First, the accuracy of the original clock set from a portable
clock is expressed as an uncertainty (usually +5 psec). Time is maintained at each
station on one main channel, with one or more alternate channels keeping time
independently for backup. If the main channel has to be reset to one of the backup
channels, an additional uncertainty is added (usually +5 psec). The second uncertainty
is the deviation of the oscillator caused by its drift in frequency. The oscillator
drift is determined by comparing the phase of the VLF station with that of the oscillator
at a particular time each day. Each station steers or guides its oscilla}tor to keep its

time-drift uncertainity as small as possible (usually +50 psec).

In addition to the above uncertainties, two sets of time corrections are added in
order to have time equivalent to UTC(USNO). One set consists of corrections of hours,
minutes, seconds, or parts of seconds when a failure has occurred in the main time-
keeping channel. These corrections are confirmed by referring to the alternate time-
keeping channel and the WWV time signals. If all channels fail, time reference is
lost and a reset is necessary. The second set of corrections is added in Cambridge;
this consists of the computed phase differences between the average VLF phase for
a period (usually a month) and the phase of the VLF at the time the clock is set.

These corrections, determined from data published in USNO time-service bulletins,

are generally on the order of <20 psec.
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Two files of time corrections are maintained by the Data Services Division at
SAO. The first gives the difference between A.S and UT1, and the second, the
difference between A. S and the clocks at the observing stations. The time system
A.S is related to UTC(USNO) by the expression

A.S - UTC(USNO) = 65140768 + 0. 002592000(T - 39856. 0)

for the period February 1, 1968, to January 1, 1972; T is the time in Modified Julian
Days; 39856.0 is January 1.0, 1968; and the difference is given in seconds. The
A.S - A, 1 difference is about 0. 8983 msec.

UT1 data are obtained from '""Circular D, ' published monthly by the BIH. Values
of UT1 - UTC(BIH) and AT - UTC(BIH) are listed at 5-day intervals. The difference
A.S - AT is currently 35.3 msec. A.S - UT1 is calculated by the relation

A.S-UT1=(A.S - AT) +[AT - UTC(BIH)] - [UT1 - UTC(BIH)]

A second-order polynomial is fitted to the A.S - UT1 values, and the coefficients are
punched on cards. Usually, each polynomial covers a 50-day period. If the values

change too rapidly, the interval can be reduced to 25 days.

The difference between the station clocks and UTC(USNO) is recorded by STADAD
as described. The corrections are added to the A.S - UTC(USNO) difference to
obtain the correction from the station clock to A.S time. Cards are punched giving
these corrections as a series of straight-line segments specifying the values of the
corrections at the beginning and end of each interval. A new card must be used

whenever there is a gap, discontinuity, or change of slope in the time correction.
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ATMOSPHERIC REDUCTION OF LASER DATA
C. G. Lehr

Laser ranges determined by using the value of the velocity of light in a vacuum
must be corrected for the fact that the laser pulse travels at a lower velocity during
its passage through the earth's atmosphere. The correction is currently made by
means of the following formula (obtained in a personal communication from Gordon D.
Thayer):

1

2.238 + 0.0414 PT -~ - 0.238 hS

sina + 1072 cot a

where r, is the uncorrected range (m), T is the corrected range (m), P is the
atmospheric pressure (mb) at the laser station, T is the temperature (K) at the laser
station, hS is the laser's elevation above mean sea level (km), and a is the altitude
angle of the satellite. The formula holds for a ruby laser, which operates at 694 nm.
It should be used only when 0

> 5° where 0, is the apparent altitude angle (i.e., the

0 0
altitude angle uncorrected for atmospheric bending).
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PULSE ANALYSIS
C. R. H. Tsiang and C. G. Lehr

The effects of variations in pulse amplitude and shape must be carefully considered
in attempting to reduce the noise and bias in laser range measurements. The simplest
mode of operation in making time-interval measurements employs only a fixed-voltage
threshold discriminator. Range times obtained this way are susceptible to errors
caused by phenomena such as leading~edge walk and leading-edge pulse distortion.
Attempts were made during operations to keep these effects to a minimum, and
further work was done to record some of the laser passes on film. Errors on the
order of 5 nsec can be expected when point-to-point amplitude changes affect the
fixed threshold counter triggering circuit. Reduction of the photographic images of
the outgoing- and return-pulse oscilloscope traces may produce range-correction
figures to decrease the net range-counter errors to about +1.7 nsec. No work has yet
been done to evaluate fully the accuracy of the photographic data collected during
ISAGEX, and further study is necessary to substantiate empirically the estimated
accuracy of +1.7 nsec. The process of photoreduction of the data and discussion of
the system-accuracy potential is given in Lehr, Pearlman, and Scott (1970a). Early
attempts at testing the effectiveness of this technique are presented in Lehr, Pearlman,
and Scott (1970b).

Table 1 lists the satellite passes covered by photography. Most returns were
obtained on Polaroid film, rather than on 35-mm film, because of the former's quick
developing process. | This rapid feedback was advantageous to the laser operator for
adjusting the amplification level in the return-signal circuitry. Saturation of the
amplifier, the limited resolution range of the oscilloscope at a fixed gain, and the
minimum voltage imposed by the counter threshold were the constraints that had to
be satisfied. Returns were photographed successfully at all three new laser stations
in spite of early problems, such as signal adjustment and operation of the laser with

new procedures and with an already heavily burdened crew of observers.

7Iv’ré‘(7:edir_|g pége blank
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The listing of satellite passes gives some information of the quality and quantity
of the data, even though little has been done so far to reduce the images for range
correction factors. The column marked "Total reported observation points' refers
to the number of range measurements reported by the station for each pass, and the
next column gives the number of attempted photographic images. The actual number
of traces of return or noise pulses is given in the column labeled "Images." Of these
frames, only a few are of sufficient quality that they could be measured reliably.
Those of reduction quality should produce measurements of at least +3-nsec consist-
ency, and probably no worse than 1.5 nsec rms. Those images that do not qualify to
be counted in the '"Reduction quality' column are usually very irregularly shaped,
low-level returns or extremely strong returns that go off the oscilloscope screen or
are distorted by the saturation of the amplifier. In some cases, there are images of
noise pulses that have falsely stopped the range counter. Even in these rejected
images, there is useful information about the behavior of the return-signal circuitry
under extreme amplitude conditions. Aside from the measurement of the images for
range correction figures, the most important additional data come from the cataloging
of return-pulse amplitudes and shapes photographed under routine laser tracking
procedures. These data can be applied to studies on the scintillation of returns and
to the calculation or prediction of return amplitudes. The amount of photographic
data amassed during the last part of ISAGEX is insufficient in itself to have much
value. Some reduction work is planned, however, so that the results can be used to
evaluate the effectiveness of the photographic technique and to improve the operational

procedures of the data-recording system.
REFERENCES

LEHR, C. G., PEARLMAN, M. R., and SCOTT, J. L.
1970a. A photographic technique for improved laser-ranging accuracy. In
Laser and Radar Investigations, ed. by Computer Sciences Corp.,
NASA, Washington, vol. III, pp. 51-56.

1970b. Range corrections from oscilloscopic displays of laser returns.

Smithsonian Astrophys'. Obs. Laser Rep. No. 4, 27 pp.

34



Table 1. Satellite returns.

re’II‘)%t:tle d Number of frames
Time observation ‘ Reduction
Date (UT) Satellite points Total Images quality
Brazil
June 17 228530 7010901 0
June 18 08 23 6800201 9 2 0
June 19 06 06 7010901 3 0
August 5 22 34 6508901 39 45 17 0
August 11 20 53 6508901 31 24 12 0
August 11 21 22 6508901 11 15 7 0
August 13 23 14 7010901 1 3 1 1
August 14 08 03 6508901 20 15 10 4
August 14 22 20 6508901 13 3 3
August 22 02 14 6503201 5 1 0
August 22 06 32 6508901 19 6 0
August 23 21 33 6800201 10 15 3 0
August 24 03 28 6503201 1 1 0
August 31 03 53 6503201 4 1
September 1 05 56 7010901 9 4 3 1
September 23 22 27 6508901 25 22 11 3
September 27 23 31 6800201 18 18 15 8
October 1 22 58 6800201 20 21 15 3
October 1 22 59 6508901 20 9 2 1
October 3 22 24 6503201 15 9 7 0
October 4 21 11 6508901 15 3 3 0
October 16 06 58 6508901 14 3 3 3
October 24 05 22 6508901 15 7 6 2
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Table 1 (Cont.)

r;%t;ltle d Number of frames
Time observation Reduction
Date UT) Satellite points Total Images quality
Peru
May 19 17%59™ 6508901 41 26 25 9
May 19 22 09 6800201 33 26 26 8
May 20 17 55 6508901 16 28 28 6
May 22 02 53 6508901 8 2 2 0
May 28 03 23 6508901 17 1
June 3 01 36 6508901 31 20 20 0
June 8 13 01 6508901 60 35 27 5
June 8 23 01 6800201 17 16 14 0
June 8 23 58 6508901 34 28 21 1
June 9 00 13 6701101 16 5 5 0
June 9 13 04 6508901 49 14 14 7
"~ June 10 00 01 6508901 43 29 20 7
June 10 11 20 6800201 21 14 12 0
June 10 13 10 6508901 45 13 9 2
June 11 00 06 6508901 31 15 13 0
June 11 13 16 6508901 55 48 37 22
June 11 22 08 6800201 4 3 2 0
June 12 13 20 6508901 51 39 33 20
June 13 13 24 6508901 29 17 12 0
June 13 22 16 6508901 22 15 15 0
June 13 22 47 6800201 32 20 19 0
June 15 22 22 6508901 26 12 9 0
July 6 17 35 6508901 20 18 16 7
August 17 21 21 6508901 14 6 9 0
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Table 1 (Cont.)

Total Number of frames
reported
Time observation Reduction
Date uT) Satellite points Total Images quality

South Africa

August 19 00P0s™ 6508901 45 60 33 5
August 20 00 11 6508901 28 44 27 4
August 23 00 24 6508901 42 54 22 10
August 24 00 26 6508901 31 56 12 1
August 24 07 16 6800201 5 31 1
August 24 17 52 6800201 12 25 3 0
August 25 06 07 6800201 9 36 16 0
August 26 00 37 6508901 28 49 20 7
August 26 22 36 6508901 12 41 8 0
August 26 22 39 6508901 14 4 0
August 27 17 19 6508901 15 24 14 2
August 27 22 40 6508901 29 49 16 0
August 28 00 47 6508901 10 32 20 0
August 29 22 48 6508901 40 57 15 0
August 30 18 15 6800201 14 23 14 0
August 30 22 53 6508901 37 55 36 0
August 31 06 10 6800201 3 32 17 0
August 31 22 56 6508901 41 56 35 0
September 1 17 06 6800201 10 16 7 0
September 4 21 90 6508901 35 47 24 0
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STATISTICS: RETURNS AND FAILURES

B. R. Miller

The following statistics represent the SAO and Air Force Baker-Nunn optical and
the SAO laser returns during the months of intensive tracking on the individual satel-

lites.

The first 2 months' predictions were generated with a paucity of observations,
which may account for the sparse number of returns. During the rest of ISAGEX, as
more observations became available for use in predicting orbits, the number of returns

increased also.

The numbers here reflect the data collected during ISAGEX after gross errors

were removed in the orbit computations for predictions.

The data were processed for validation purposes before being used in analysis.
Therefore, there is a discrepancy in these figures and the final data used in the

analysis.

Precedingnage blank
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BE-B (6406401)

Station

Location

COSPAR
number January March April Total

San Fernando, Spain
Naini Tal, India

Maui, Hawaii

Mt. Hopkins, Arizona
Olifantsfontein, South Africa
Island Lagoon, Australia
Dodaira, Japan
Arequipa, Peru

Debre Zeit, Ethiopia
Dionysbs, Greece

Natal, Brazil
Rosamund, California
Cold Lake, Canada
Johnston Island

Mt. John, New Zealand
San Vito, Italy

Total

Arequipa, Peru
' Mt. Hopkins, Arizona
Natal, Brazil

Dionysos, Greece

Total

Optical Returns

9004 10 5 15
9006 6 12
9012 7 12
9021 6 3 13 22
9022 5 5
9023 13 8 5 26
9025 8 1 9 18
9027 1 1
9028 2 2
9030 7 13 20
9039 1 5 6
9113 5 1
9114 2 16 18
9117 1 1
9119 9 21 1 31
9120 . 2 13 _15

50 80 80 210
Laser Returns*
7907 6 (18) 6 (18)
7921 1(3) 6 (21) 7 (24)
7929 1) 3 (8) 4 (9)
7930 . 3 (5) 3 (5)

1 (1) 4 (8) 15 (47) 20 (56)

" _
The first number is the number of passes of the satellite; the number in parentheses
is the total number of points in those passes.
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BE-C (6503201)

Station
COSPAR
Location number February March August Total
Optical Returns

San Fernando, Spain 9004 6 1 30 37
Naini Tal, India 9006 14 3 17
Maui, Hawaii 9012 12 2 42 56
Mt. Hopkins, Arizona 9021 8 5 13
Olifantsfontein, South Africa 9022 20 3 21 44
Island Lagoon, Australia 9023 47 6 11 64
Dodaira, Japan 9025 8 7 15
Arequipa, Peru 9027 2 8 10
Debre Zeit, Ethiopia 9028 3 1 4
Dionysos, Greece 9030 2 2 44 48
Natal, Brazil 9039 5 5 10
Rosamund, California 9113 2 3 5
Cold Lake, Canada 9114 5 3 20 28
Johnston Island 9117 10 3 13
Mt. John, New Zealand 9119 34 4 26 64
San Vito, Italy 9120 . _ _68 _68

Total 170 40 286 496

Laser Refurns

Olifantsfontein, South Africa 7902 4 (6) 1 (2) 5 (8)
Arequipa, Peru | 7907 2 (9 11 (30) 25 (181) 38 (220)
Mt. Hopkins, Arizona 7921 2 @) 2 @) 2 (3 6 (11
Natal, Brazil 7929 7 (20) 2 (6) 13 @46) 22 (72)
Dionysos, Greece 7930 1 (3) 10 (37) 11 (40)

Total 15 (39) 17 (45) 50 (267) 82 (351)
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DIC (6701101)

Station
COSPAR
Location number March April June Total
Optical Returns

San Fernando, Spain -~ 9004 6 17 51 74
Naini Tal, India 9006 6 14 20
Maui, Hawaii 9012 15 18 47 80
Mt. Hopkins, Arizona 9021 8 27 35 70
Olifantsfontein, South Africa 9022 11 7 5 23
Island Lagoon, Australia 9023 20 10 5 35
Dodaira, Japan 9025 16 1 17
Arequipa, Peru 9027 3 6
Debre Zeit, Ethiopia 9028 2
Dionysos, Greece 9030 2 19 33 54
Natal, Brazil 9039 1 2 4 7
Rosamund, California 9113 10 14 24
Cold Lake, Canada 9114
Johnston Island 9117 12 12
Mt. John, New Zealand 9119 1 7
San Vito, Italy 9120 . _32 11 _43

Total 73 189 226 488

Laser Returns

Arequipa, Peru 7907 11 (134) 11 (134)
Mt. Hopkins, Arizona 7921 1 (6) 6 (19 7 (25)
Natal, Brazil 7929 2 (1) 2 (11
Dionysos, Greece 7930 __ 36 (187) 36 (187)

Total 1 (6) 55 (351) 56 (357)
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EVALUATION OF LASER OPERATIONS
J. Thorp

We selected a 3-month period during ISAGEX for collecting laser data in order to
evaluate the potential of the SAO laser system. We chose June, July, and August for
its good weather and the South Africa station since it was ranging to only the Geos 1
and Geos 2 satellites. The evaluation, therefore, did not have to consider the ques-

tionable orbits or the bad aspect angles of the magnetically stabilized satellites.

Statistics were generated by using laser passage information compiled at each
station. We considered both individual points (Figure 1) and total arcs (Figure 2).
Two to 65 points were predicted per arc during this period, with an average of 35
points per arc. Arcs started and ended at 20° above the horizon.

For simplicity in preparing the graphs, each attempted point was considered an
attempted arc and each successful point was considered a successful arc. This,
however, did create some apparent discrepancies between the two graphs. The
category ''not attempted (N.A.) other,' which includes pass conflicts, observer errors,
and attempts not made owing to safety, shows a decided decrease when points are com-
pared to arcs. The main reason for this is that points at the beginning and end of many

passes were not attempted because of the hazards of operating below 30°.

Another discrepancy is apparent when successful points are compared to success-
* ful arcs. However, as the following statistics show, 44 to 64% of the arcs have less

than 16 successful points:

Percentage of arcs

Number of point Total Total
umbe points predictions successes
1-3 4-6 7-15 16 or more (points/arcs) (points/arcs)

June 16% 20% 28% 36% 4834/141 1013/67
July 8% 10% 16% 66% 4001/114 1588/69
August 5% 11% 34% - 50% 5572/152 1391/69
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_Figure 1. Percentage of total predicted Figure 2. Percentage of total predicted
points from South Africa. arcs from South Africa.

The percentage of successful points per pass seems to be related to weather

(July had the best weather). During August, a period was reported as not attempted
owing to a malfunction, but, in fact, the maintenance was scheduled for and performed

during cloudy weather.
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From the statistics, we can expect that, in general, with the laser system operat-
ing properly, about 30% of the predicted points will be successful. When dealing with
arcs, we see a higher percentage of overall success, in that about half the predicted
arcs are successful. If we discount weather completely, the success ratio is higher,
around 70%. The cases studied are ideal, and we feel that this is the best the system
can do under present circumstances. When bad weather occurs and when satellites

with less stable orbits are added, the success ratio drops substantially.
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PREDICTION PROBLEMS
J. Latimer

Generating accurate predictions is crucial to the successful use of static-pointing
laser systems. The prediction—observationorbit-determination cycle is a self-
sustaining process when it works properly. In general, the process functioned rea-
sonably well during ISAGEX, except for the Peole satellite, which, with a perigee of
500 km, is subject to a great deal of atmospheric drag.

Section 1 discusses the prediction accuracies obtained, and Section 2 presents a
technique for improving poor predictions. Section 3 deals with the drag problem,

especially as it relates to Peole.
1. PREDICTION ACCURACIES

In Table 1 we have estimated the accuracy of predictions for the ISAGEX satellites
during the saturation observing periods. The best way to express accuracies seems
to be in topocentric arcminutes, since this bears most directly on the static~pointing
laser system. In general, because of the beamwidth, prediction accuracies to 10 arc-
min are desirable; a smaller accuracy presents problems for acquisition (although the

problem is not completely insurmountable, as discussed in Section 2).

Predictions degrade exponentially in time. We give accuracies for the first and

. last day of each week's predictions. Interpolation will provide estimates for the other
days. The figure for the first day is actually the rms of the orbit determination."
Since we never found any discontinuity between the rms orbit fit and the residuals of
the first day's observations using the extrapolated orbit, this seems an appropriate

measure of the starting value.

Precéding page blank
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The final day's accuracy is determined by a direct comparison of pointing angles
from the expiring and the fresh predictions. This overlap day was generated to ensure
operation even in the case of communications delays. Occasionally, there was no
overlap day, and a comparison could not be made. This is indicated by an "X" in
Table 1. Clearly, in any week, the final day's figure is uncertain by the amount of
error in the next first day's prediction, which is almost always relatively small.

The error is predominantly in the along-track direction; the across-track component

is relatively insignificant.

Notice in the table the large errors in the Peole predictions. In an attempt to
improve the accuracy, we generated Peole predictions twice a week beginning with
period IV. From period IV on, we give two overlap-day comparisons in addition to
the first orbit fit. Although there was noticeable improvement, Peole predictions

remained troublesome (owing to atmospheric drag, see Section 3).

Finally, since we intended for these values to represent worst case situations,
we chose to compare pointing angles at the culmination of each pass. Culmination,
or the point of closest approach, is more sensitive to orbital errors than are lower

elevation points.
2. FIELD UPDATING OF PREDICTIONS

One of the useful properties of laser ranging systems is their ability to operate
at low elevation angles. This permits errors in the predicted satellite mean anomaly
to be quickly detected and corrected. Generally, the error in satellite mean anomaly
is the only significant one in satellite ephemerides, so that when this error has been
- determined by field personnel, they can update predictions from the Computations
Center in Cambridge by applying a simple correction to the firing time of their look

angles.

Figure 1 demonstrates how the error in mean anomaly is determined. The satel-
lite is predicted to be at position 1, azimuth, altitude, and range from the station,
at epoch 1, and at position 2 at epoch 2. Suppose that at epoch 1 the observed and the
predicted range differ by Ar. (It is feasible to obtain returns in this case, provided

the major component of the satellite's motion is toward the observer; this is true very
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early in the pass for passes with high culmination.) We can assume that the predicted
time interval between epochs 1 and 2 is correct, although the epochs themselves are
in error by At; and similarly s, the range interval between positions 1 and 2, is cor-

rect, although the range to position 1 is wrong. Then, At = (d/s) Ar, approximately.

202 -151
TO STATION 2
-
‘\40
TO STATION 6 O/
- : 4 I

Figure 1. Satellite—station geometry at a low elevation angle.

Actually, for convenience, Ar and s are expressed in terms of propagation times
rather than of distances. The time interval between successive predicted points, d,
is almost always 15 sec; s varies, but it is typically around 0. 5 msec for low eleva-
tion angles. In order to determine At quickly, station personnel use graphs of the
linear relationships between At and Ar for the various values of s frequently encoun-
tered. The value Ar can be resolved to 1 nsec, so that, for example, when

s = 0.5 msec and d = 15 sec,

At = 30 msec mean-anomaly correction
1 nsec observed range error

Figure 2 is the station graph for determining the error in mean anomaly. Given Ar

and s, At can be quickly found.
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Figure 2. Typical station graph for determination of mean-anomaly error: s = prop-
agation-time differences between successive predicted points; Ar =
(observed - predicted) range propagation time; At = mean-anomaly correc-

tion; d = 15 sec.
3. ATMOSPHERIC-DRAG EFFECTS

The Peole satellite (7010901) has an apogee of 730 km and a perigee of 500 km.
Predictions of it are difficult because not only is it subject to considerable atmospheric
drag but also the drag is highly variable. Figure 3 shows the effects of drag varying
by about an order of magnitude. .

55



. *9109J JO UOTJBID[900® [BIQIO 9y} ‘U ‘(0) PUB {XN[J I€[OS WO-L QT
L oHrm (@) ¢j0ds joy orasydsourje oy} pue 91094 Jo 9981xad oy} usomioq o[8ue o1IU90008 oy} ‘¢ (e)
*9109d JO UOT)}BIS[9008 [BJIQI0 Y} UO XN[J JB[OS WO~/ *0T 9y} pue o[3ue 011jus0093 Jo s309JJ0 9YJ, °*g§ 2andig

o3

1261 ‘1 Ld3S SAVA NVINOSHLINWS 1461 '6 NV
| _
0021% 0SIy 00llY 0501t 0001 & 0960t
T T T T T
— 1
p -2 \vM
¢ 0,_3
p -
[¢°]
V <
[»%
s &2
» ]
N
5 N Ho ~—
2
-8
-6
06 |- . >.. r
o oon b Lo .................. oo ..\.:. Tl Ol -~
— . ey . . e M . . . .
c oel w e s \uO_n_ o ' * 0 .
Z ‘. B o o
— - .o o o 8
5 osl . . .
h{b\ . 0. . l.ﬁ.‘
oLl |- q R
06! | w4 .08
002l
009
— OO

16 -20¢

56



For predictions to be useful for laser ranging, we estimate that the acceleration
in mean anomaly (the empirically determined term that represents the effect of drag)
ought to be correct within 5 or 10 parts per million. As can be readily seen from
Figure 3, the term frequently changes by several times this amount in just a few days.
The problem amounts to predicting the future state of the atmosphere, for which there

is no satisfactory procedure.

An additional problem is that of obtaining an adequate orbital determination in
the first place. Orbit determination was frequently weak because of insufficient obser-

vations.

We attempted to correlate the orbital acceleration of Peole with two parameters
that are readily obtainable. The first is 3, the geocentric angle between the satellite
perigee and the center of the atmospheric ""hot spot, " i. e., the subsolar "bulge' in
the atmosphere. We set the hot-spot center at the subsolar point delayed by 30° in
longitude. The angle ¥ is plotted in Figure 3, along with preliminary values of our
second parameter, the 10. 7-cm solar flux, which gives a rough indication of the solar

influence on atmospheric activity.

It seems apparent that the shapes of both the i and the flux curves are reflected

in the acceleration of Peole, although not in any quantitatively consistent manner.

We conclude that the only feasible way to solve the prediction problem caused by
Peole's high drag is to increase the frequency of the prediction—observation—orbit-
determination cycle. Yet, a cycle faster than the present twice-weekly one is
impractical. Possibly, an orbit-computation capability on location at the laser sites
would permit a rapid and accurate enough iteration of the cycle for the drag problem

to be overcome.
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SIGNAL STRENGTH AND OBSERVABILITY
J. Latimer

One problem that the laser-ranging technique continually presents is that of
observability; that is, how can the observer know if a particular satellite and laser
geometrical configuration is such that he is likely to receive a sufficiently strong

return signal?

Although this question applies to all satellites, an especially striking situation
is that of the four magnetically stabilized satellites (BE-B, BE-C, D1C, and D1D)
when they are observed from stations in the southern hemisphere. It can be very
difficult to observe them successfully because the retroreflector arrays, on the north-

seeking ends of these satellites, tend to face away from southern stations.

To see the effect of this problem, we selected at random 26 passes (342 obser-
vations) of BE-C observed from station 7907 (Arequipa, Peru), at latitude -17°. The
observations were made between August 31 and November 5, 1971, and all give
acceptably small orbit-fit residuals. Figure 1 is a plot of the passes, in the station's
altitude-azimuth coordinate system. Indeed, when the satellite is in the northern
half of the sky, it cannot be observed from this station. (Attempts were made to

observe all passes.)

If we assume that the satellite is always oriented along the lines of the earth's
magnetic field, we can calculate the aspect angle at the satellite between the symmetry
axis (North) and the line of sight to the station. We used the spherical-harmonic
representation (up to degree and order 4*) of Cain, Hendricks, Langel, and Hudson

(1967) as the geomagnetic model and derived aspect angles (see Appendix A) for each

*Although Cain's field is represented to degree and order 10, we found that the
truncated field yielded aspect angles differing only by about 1°. This is sufficient,
considering that the satellite is likely to oscillate about the field direction with an
amplitude of a degree or more.

Preceding nage blank

59



of the 342 observations. Figure 2 is a plot of the reflective area versus the angle of
incidence for the BE-C satellite. Cases 1 and 2 are measured from different radial
angles. We used mean values, since there is no way to determine the radial angle,
and the difference is slight. The histogram in Figure 3 shows the observed frequency
of occurrence of each aspect angle. The significance of the aspect angle is its relation

to the effective area of the satellite retroreflector array.

202-15!
AZIMUTH
315° 0° 45°

ALTITUDE

° o 70° 70° 50° 30°
2700 \]\30 501 \ | ] | p.d 2 / 900

2250 /

135°

180°

Figure 1. 26 passes of BE-C in the altitude-azimuth coordinate system of the Peru
station.

We could avoid generating laser predictions for magnetically stabilized satellites

that are impossible to observe by calculating the aspect angle, choosing a suitable limit

for the angle, and suppressing all predicted points exceeding that limit. Although the
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histogram of Figure 3 serves to confirm Figure 2 (there were no returns from aspect
angles greater than 110°, the Figure 3 cutoff), the slow fall-off of returns for large
aspect angles suggests that we ought to consider the range equation if we wish to

determine whether particular satellite—station geometries are likely to be observable.
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Figure 2. Reflective area vs. angle of incidence of BE~-C (from Minott, 1963).
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Figure 3. Histogram of the aspect angles of satellite BE-C.

We estimated average signal strengths for all the data by using the range equation
of Appendix B and the retroreflector area function of Figure 2. The results are dis-
played in Figure 4. The large population at low signal strengths is disturbing, but

we must consider the following factors:

A. Error in the assumed beam divergence. Owing to the method of recording

the transmitted beam divergence, some estimates are surely too high; therefore,

some signals are greater than indicated.

B. Scintillation. We estimated only the average signal — the actual signal may
vary by more than an order of magnitude (Jaffe, 1971), and some of the low average

signals probably yielded high actual signals.

C. Weak-signal conditions. There are many more opportunities to attempt

observation under wéak—sig‘nal conditions than under strong-signal conditions. Thus,
although the probability of success diminishes, the number of opportunities greatly

increases, yielding a significant number of weak~signal returns.
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Figure 4. Histogram of relative signal strengths for Peru BE-C data.

Point C is easily verified. We constructed a uniform distribution of 706 satellite
positions at a height of 1150 km (typical for BE-C) over Peru such that all points
were above the elevation angle limit of 10°. By using a typical beam divergence '
(3.5 mrad) and the same values for the magnetic field that we used in Figure 3, we
computed the expected average signal strengths. From the histogram in Figure 5, it
is clear that the population of weak-signal situations is large.

In conclusion, we can see that satellite configurations yielding aspect angles
greater than 110° can be suppressed without loss of possible observations. We will
-attempt to measure signal strengths directly in order to have a better idea of both
the minimum useful signal and the statistical behavior of scintillation. In addition,
we intend to extend this analysis to the gravitationally stabilized satellites Geos 1,
Geos 2, and Peole. For these, the principal problem is that of obtaining returns at

low station-elevation angles.
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Figure 5. Histogram of estimated signal strengths for a uniform distribution of posi-
tions of BE-C from Peru.
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APPENDIX A

COMPUTATION OF ASPECT ANGLE a

—

Station position: S
Observation vector (line-of-sight direction and range): 0o
Satellite position: P

Magnetic field at P: b3l

Clearly,
S+0=P
and
-
_ O-F
cosa=- —/——— ,
|O||F|

F=-vv ,
where
"max nt] D
a m m m
V=a E (;) E (gn cos m<j>+hn s1nm¢>Pn ®)
n=1 m=0

r, 9, and ¢ are polar coordinates for i’: a is the earth's mean radius, an are Schmidt
normalized spherical functions, and ggl and h;n are the coefficients of the magnetic-

field representation.
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APPENDIX B
RANGE EQUATION
We use the range equation from Lehr (1966):
S= E —19 <—lz) (%) <g£> T2 photons ,
2,86 X 10 R t s

where E is the output laser energy (=7.2 J), R is the range to the satellite in mega~
-0.071/sin a

meters, T is the atmospheric transmission for Peru (=e , where a is the

elevation angle), AS is the effective area of the satellite reflective surface, QS is the
solid angle of the reﬂected laser beam (= 2. 83 X 10_9 sr), Ar is the effective area of
the receiver aperture (= 0.21 mz), and Q is the solid angle of the transmitted laser
beam. The numerical factor converts joules to photons at a wavelength of 6943 A.

In addition, we use N = S/58 to represent the photodetector conversion efficiency,

where N is the number of photoelectrons generated.
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DATA FORMATS

B. R. Miller

1. INTRODUCTION

The observational data formats described are the ones used by SAO in various

computer programs.

The optical observation format is the same as that used in the past. It has been

reproduced here to facilitate use by ISAGEX members.

The laser format has been revised to provide room for time designation to the
nearest nanosecond and range to 0.01 m. Temperature is now given in degrees

Celsius, pressure in millibars, and humidity in percent.

2. SAO OPTICAL OBSERVATION CARD FORMAT AND EXPLANATION

Field Column Description
1 1-7 Satellite identification

1-2 year of launch from 1900
3—-5 number of launch in that year
6—7 particle number

Satellite 1959 al, for example, would be designated 5900101.

2 8—12 Observation number — Each observation of a satellite in a
given year is designated by a different number. The source
of an observation is also indicated by the observation number.

1-9999 miscellaneous
10000-19999 Baker-Nunn, field-reduced
30000-39999 Moonwatch
50000-59999 miscellaneous
70000-79999 photoreduced Baker-Nunn
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Field

Column Description
13 Blank
14—-17 Station number — In the COSPAR numbering format, e.g.,

9039 is Natal, Brazil.

18—23 Date of observation

18—-19 year, from 1900

20—-21 month

22-23 day

24—33 Time designation — Different types of observations are made

using different time systems. Different times used in report-
ing SAO observations are as follows:

a. Field-reduced Baker-Nunn observations — generally
WWV received before 1966, UTC(USNO) after.

b. Photoreduced Baker-Nunn observations — A.S
Note: A.S is a time scale with a fixed relation to NBS(A)
before April 1968 and to A. 1 after then. Values of
(A.S-WWYV emitted) are available in tabular form.

24—25 hour

26-27 minute

28—-29 second

30—33 fraction of seconds, to 0.1 msec

34—-52 The interpretation of the following field depends on the code

in column 56. If column 56 is 0, then the observation is
right ascension and declination (a, 6).

34 blank

35—-36 - hoursofa

37-38 minutes of a

39-40 seconds of a

41-43 fractions of seconds to 0.001 sec
44 sign of 6

45-46  degrees of &

47-48 minutes of &

49-50 seconds of 6
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Field Column Description

51—52 fractions of seconds to 0.01 sec

If column 56 is 1, the observation is altitude and azimuth
corrected for atmospheric refraction. Altitude and azimuth
observations not corrected for atmospheric refraction have
3 in column 56.

34—-36 degrees of azimuth; 999 indicates azimuth is in mils

37—-38 minutes of azimuth

39-40 -seconds of azimuth

41-43 fraction of seconds to 0.001 sec

37-41 mils to nearest tenth if azimuth is in mils; decimal point
assumed before column 41

44 blank

45--46 degrees of altitude; 999 indicates altitude is in mils

47—48 minutes of altitude

49-50 seconds of altitude

51-52 fractions of seconds to 0.01 sec

45-51 mils to nearest tenth if altitude is in mils; decimal assumed

before column 51

If column 56 is 4, the observation is direction cosines (£, m),
corrected for refraction; a 5 in column 56 indicates the
observation is in direction cosines uncorrected for refraction.

34 sign of £ (blank or minus)
35—42 £ to 8 decimal places (decimal point implied before column 35)
43 blank ‘
44 sign of m (blank or minus)
45—52 m to 8 decimal places (decimal point implied before column 45)
n= 224 m2
8 53—58 Index codes
53 time-precision index

Code Standard error in timing o,

0 No estimate

1 O’t = 0.0003 sec
2 0.0003 < 0y = 0.002

3

0.002 < S 0.005
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Field Column

Description

Code Standard error in'timing O
4 0.005 < otso.oz
5 0.02 <0‘t50.05
6 0.05 <« O’t =0.2
7 0.2 <0y = 0.5
8 0.5 <0y = 2.0
9 0y > 2.0

54—-55 position precision index

Code Standard error in direction o

00 No estimate

01 Op = 15

02 115 < Op = 215
03 215 < GD = 3!5

04 315 < OD = 45

05 475 < GD = bHU5

06 55 < GD = 6'.'5

07 6l'5 < GD = 75
08 75 < °p = 8!'5

09 85 < OD = 95
10 95 < GD = 10!'5
11 10V5 < 0p = 115
12 11V5 < 0‘D =125
13 1215 < “p = 13v5
14 1345 < OD = 14v5
15 1415 < op = 151'5
16 1515 < GD = 16!5
17 16115 < Op = 17v5
18 1705 < GD = 18V5
19 1815 < O‘D = 19V5

20 1915 < GD = 205

21 20!'5 < Op = 22"

22 22" < Op = 2315

23 23U5 < GD = 26"

24 26" < op = 29"

25
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Field Column Description

Code Standard error in direction OD

26 33" < op = 38"
27 38" < op = 45"
28 45" < op = 54"
29 54" <op= 1l
30 111< op = 113
31 N3<op= 17
32 R7<op= 21
33 211 < op = 217
34 217 < op = 3!5
35 315« op = 414
36 414 < op = & 8
37 518 < Op = 75
38 715 < op = 917
39 917 < op = 13!
40 13" <op =17
41 17t < op = 22!
42 22" < op = 28!
43 28' < 0p = 37!
44 37" <op =49
45 49" < op = 121
46 l?l<oDs )15’4
47 174 < °p = 1°8
48 l?8<0Ds 2?4‘
| 49 2?4 < op
56 observation type index
Code Explanation
0 right ascension, declination
1 altitude, azimuth (corrected for refraction)
2 not used
3 altitude, azimuth (uncorrected for refraction)
4 £, m (direction cosines, corrected for refrac-
tion) '
5 £, m (direction cosines, uncorrected for refrac-
tion)
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Field Column Description

57 This index refers to the date of equator and equinox to which
the observation is referred. (Meaningful for right ascension
and declination only.)

Index Date
0 Date of observation
1 1855.0
2 1875.0
3 1900.0
4 1950.0

58 instrument description index

Code Optical observations
0 naked eye and binoculars, visual
1 telescope, aperture less than 5 inches
2 apogee telescope, astronomical refractor

or reflector, theodolite, visual

3 Baker-Nunn camera, photographic
small missile tele-camera, tracking cameras
with focal length 20 inches or greater, photo-
graphic
5 cinetheodolite, tracking cameras with focal
length less than 20 inches, photographic
6 Harvard meteor camera (Super-Schmidt),
photographic
7 stationary telescope or camera with focal
length equal to or less than 10 inches, photo-
graphic
8 direction observation associated with a laser
instrument
9 other instruments
9 59—64 Blank
10 65—70 Conversion from the UT1 to the A. 1 time system, i.e.,
A.1-UT1
65 minus if A. 1 - UT1 is negative, or tens digit if positive and
necessary
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Field

11

12

13

14

11

Column

66
67-70

71—80
71-75
76

77—178

71—80

Description

units digit of A. 1 - UT1 in seconds
decimal fraction A.1 - UT1

Identification information

film number

contains an S if observation is simultaneous

Passive or flash information

a. If the satellite is a flashing one, column 77 will contain
an F and column 78 will contain the number of the flash
as it actually occurred. (This does not apply to ANNA
flashes.)

b. If the satellite is passive, columns 77 and 78 will contain
the frame number.

Contains the letter associated with the film number if any;
otherwise it will be blank.

Used for balloon satellites to indicate a precision reduction
correction for satellite size has been added; otherwise blank.

Moonwatch — used for apparent magnitude information.

Precisely reduced Baker-Nunn observations are given in the coordinate system

of the SAO Star Catalog (equator and equinox of 1950. O).' The positions have been

corrected for annual aberration, and the star positions, for proper motion to the year

of observation. No corrections have been applied for diurnal aberration or parallactic

refraction.

The time of the observation is given in A.S (Smithsonian Atomic Time), defined

by the expression

A.S - UTC(USNO) = 62140768 + 0. 002592000 (T - 39856. 0)

for the time period February 1, 1968, to the present; T is the Universal Time in
Modified Julian Days (MJD), and 39856 is January 1, 1968:

MJD = Julian Day - 2400000. 5
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3. SAO LASER OBSERVATION FORMATS AND EXPLANATION

Description

Satellite identification

year of launch from 1900

number of launch in that year

particle number

Satellite 1964 64A, for example, would be designated 6406401

Observation number

20000-29999 uncorrected observation
70000-79999 corrected observation
90000-99999 GOCC laser and direction observation

Blank

Station number — In the COSPAR numbering format, e.g.,

7921 is SAO laser site at Mt. Hopkins, Arizona. Station
designations in the 7000 series include laser sites.

Date of observation

year from 1900
month

day

Time designation — Different types of observations are made

using different time systems. Time systems used are indi-
cated by the code in column 57.

hour
minute
second

fraction of seconds to 1 psec

Interpretation of the following field depends on the codes in

Field Column
1 1-7
1-2
3-5
6—7
2 8—12
3 13
4 14-17
5 18—-23
18—-19
20-21
22-23
6 24-35
24-25
26—27
28—-29
30—-35
7 36—52
36

columns 56 and 57. '
blank
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Field Column Description

37-—-46 range in meters (decimal implied before column 45 allows
range observations to be specified to 0.01 m)
4748 blank
49-52 v$1ue of refractivity correction to 0.01 m — code 1 in column
5
8 53 —58 Index codes
53 time precision index
Code Standard error in timing 0y
0 0, = 0. 000005 sec
1 0y = 0.0003 sec
54—55 standard deviation of the range 0. in meters and tenths of
meters
56 observation type index
Code Explanation
1 altitude, azimuth on laser instrument
8 laser range
57 code to indicate time system and corrections applied
Code Explanation
0 UTC emitted at transmission of laser pulse —

no corrections applied to range

1 A. S time at reception of laser pulse — refrac-
tivity correction given in columns 49—52 but
not applied fo range

2 A.S time at reception of laser pulse — refrac-
tivity correction applied to range
3 UTC time at the satellite (GOCC observations —
refractivity correction applied to range)
58 Instrument description index
Code Explanation
8 Laser observation
9 59—64 Range correction — pulse shape and size — codes 0 and 1 in
column 57
59 sign
60 meters
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Field

11

12

Column

61
62
63—64

65—177

65—66
67—170
71-72
73

74—176
7

65—77

65

66
67—72
74-77

78—80
78
79

80

Description

10 centimeters
centimeters
blank

Pressure, humidity, temperature — uncorrected observations

only, code 0 in column 57

blank

barometric pressure in millibars

humidity in percent |

sign of temperature

temperature to tenths of degrees Celsius

blank

Conversion from the UT1 to the A. 1 time system
i.e., A.1-UTI1 (actually A.S), code 2 in column 57

minus if A.S-UTI1 is negative, or tens digit if positive and
necessary

units digit of A.S - UT1 in seconds
decimal fraction of A.S-UT1
blank

Identification information

blank
type of laser pass
Code Explanation
0 night pass, satellite illuminated
1 night pass, satellite in shadow
2 daylight pass
blank
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DATA VALIDATION
E. M. Gaposchkin and G. M. Mendes

Each observing station performs the following calibration exercises:

A. Determination of the fundamental system delays to be applied to measured

time intervals.
B. Precision check of the fundamental time-interval measurement.
C. Determination of the reliability of an individual measurement.
D. Calculation of the reproducibility of an individual measurement.

Even with this elaborate procedure, further checking and information are necessary;

two approaches are employed:
A. Pass analysis, which depends on trends, noise, and consistency of the data.
B. Comparison of observations with precision orbit computation.

This latter approach, the primary tool used, is the subject of this section.

Laser data have a precision of 1 m and an accuracy that is probably somewhat
better. On the other hand, our current set of geodetic parameters is based primarily
on 20- to 40~-m camera data. From the determination of these geodetic results,
Gaposchkin and Lambeck (1970, 1971) estimated the station coordinates to an accuracy
of 5to 10 m. The accuracy of our orbit computation is no better than 5 to 10 m for
optimum satellites (Geos 1) and significantly worse for others (Peole). It is clear

that we cannot obtain an unambiguous validation of 1-m laser data with a 10-m tool.
Orbits were computed with 4 days of data every 2 days, i.e., with 2 days of over-

lap. Four days was usually sufficient to compute a reliable orbit, yet short enough to

minimize the effects of errors in the gravity field and station coordinates.

79



Owing to the paucity of laser data, we have also incorporated other tracking data,
including minitrack and field-reduced Baker-Nunn. As the main computation center,
SAO received laser data from CNES and GSFC to be used for predictions. We included
these data in our reference orbits, although we recognized that such data did not have
the benefit of refinement and validation by the originating agency. The supplementary
laser data used were from stations 7050 (GSFC), 7060 (Guam), 7815 (moved to 7809,
Haute Provence), and 7804 (San Fernando). The data from station 7820 (Dakar) were
not included because of uncertainties in the coordinates and timing. It was not our
purpose to validate the data from other agencies, but our success in validation indeed

hinged on having these supplementary laser data.

Very bad data were easy to detect. The detection of poor data proved to be very
difficult. Ultimately, three rules were applied:

A. The successive orbits had to be consistent. Nonuniform evolution of the mean

orbital elements indicated poor data had been included in the orbit determination.

B. Orbital residuals had to be consistent (i.e., reproducible) in the two computed
orbits. Using a conservative estimate of the orbital accuracy, observations that had

residuals greater than 50 m (500 m for Peole) were rejected.

C. The run of residuals in a pass had to be smooth. A large variation in
residuals (=50 m) from point to point (1 sec apart) must be an observational error
as there is no unmodeled orbital perturbation of that magnitude. The run (trend or
signature) of the residuals is a very powerful device and hinges on havirig more than
10 observations per pass. Many passes early in ISAGEX did not have sufficient data

for this test to be applied, and these were consequently very difficult to validate.

The applications of these rules had varying degrees of success. The confidence
we can put in the validated data varies considerably from satellite to satellite and
from period to period. Some of the data in periods II and III are questionable. Such
data are distributed so that only when they are combined with laser and precision-

reduced camera data can a final evaluation be made.
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A few data were analyzed on a pass-by-pass (short arc) basis. This involved use
of the orbit-computation program as an interpolation device, determining the param-
eters I, e, MO’ and n. The other orbital elements were held fixed at the values com-
puted from long-arc computation. This interpolation will reject the groww outliers and
will provide a measure of the noise (i.e., the precision) of the data. We have found this
noise to be 50 to 100 cm. Figure 1 gives the typical residuals from a short-arc
orbital fit.

-2
41078.887 .888 .889 .890 .891 .892

Figure 1. Residuals for short-arc fit of satellite 6508901 from station 7907.

It became apparent that the trend of residuals for 4-day arcs wouid provide the
same information when plotted as the short-arc residuals do. Further, bad points
not discarded by the short-arc procedure often resulted in poor short-arec fits. The
longer arcs discarded these bad points. In addition, many passes had so few points
(< 5) that short arcs Were not possible. Finally, short-arc computation provided no
estimate of the accuracy. We therefore abandoned this approach and proceeded to use

4-day arcs.
The SAO and the French laser data were input to our processing program in

A. S time at reception of the laser pulse and without the refraction correction given.

The refraction correction was computed following Tsiang and Lehr (this volume),
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and time was converted to A. S at the satellite for orbital computation. The GSFC
laser data were input in UTC time at the satellite and with refraction applied to range;
again, time was converted to A. S at the satellite. We also used as inputs the tesseral
harmonics determined in Standard Earth (II) (Gaposchkin and Lambeck, 1970), the
station coordinates listed in Table 1 below, and the polar-motion values published by
BIH. In Table 1, the station coordinates are given in megameters and the weight in
arcseconds for all but the laser stations, which are in meters. Photoreduced weights

where applicable are in parentheses.

Figure 2 gives the residuals of the same pass as in Figure 1 as it appears in a
4-day arc. The interpolation curve has been drawn to illustrate the short-arc fit.
This particular pass was chosen because it was representative of SAO's ISAGEX laser

data. It has a noise level of 0. 93-m rms and an accuracy of 2. 2-m rms.

Figure 3 gives the history of the semimajor axis for Geos 1 (6508901). The
scatter appears to be less than 1 m, which indicates that the data are good, well-
distributed, and well-understood. Geos 1 is a well-behaved satellite with an inclina-
tion of 59°. It is visible to many stations, thus giving rise to a nicely distributed
data set. Its eccentricity of 0. 071 presents no problems in the determination of the
argument of perigee, and if we look at M2 as an indication of the magnitude of the
modeled drag, we see that it is about 5 X 10-7 rev day_z, or 0.65 arcsec day_z.

Figure 4 gives the semimajor axis for Peole (7010901), with a scatter of less than
10 m. With an inclination of 15°, an eccentricity of 0.016, and M2 of 3 X 107° rev day—z
(0. 65 arcmin day-z) , orbit computétion for Peole is very challenging. Its inclination
made it visible to very few stations (7907, 7929, 7060, 4492, 4800), four of which are
in South America, giving rise to a badly distributed view of the satellite's orbit. Satel-
lites with small inclinations make computation of both the argument of node and the
argument of perigee difficult. The modeling of the drag and the solving for & and £
became impossible. We assumed values for & and €, held them fixed, and solved for
the drag modeling. This worked satisfactorily, but not so well as we had expected for

laser data.
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Table 1. Station coordinates used in the validation.
Station
COSPAR Weight
Location Number X Y Z (arcsec)
Baker-Nunn Stations
San Fernando, Spain 9004 5.105588 -0. 555228 3.769667 34 (4)
Naini Tal, India 9006 1.018203 5.471103 3.109623 34 @)
Maui, Hawaii 9012 -5.466053 -2,404282 2,242171 34 4
Dakar, Senegal 9020 5.886264 -1.845649 1.615282 34 (4)
Mt. Hopkins, Arizona - 9021 -1.936782 -5.077704 3.331916 34 (4)
Olifantsfontein, South Africa 9022 5.056125 2.716511 =-2,775784 34 (4)
Island Lagoon, Australia 9023 ~3.977765 3.725101 -3.303034 - 34 (4)
Dodaira, Japan 9025 -3.910438 3.376362 3.729219 34 (4)
Arequipa, Peru 9027 1. 943040 -5. 804207 -1.796491 34 (4)
Debre Zeit, Ethiopia 9028 4.903750 3. 965201 0.963872 34 (9
Dionysos, Greece 9030 4.595200 2.039446 3.912606 34 (4)
Natal, Brazil 9039 5. 186461 -3.653856 -0. 654325 34 (4)
Rosamund, California (AF) 9113 -2.450011 -4.624421 3.635035 34 (4
Cold Lake, Canada (AF) 9114 -1.264838 -3.466884 5. 185467 34 4)
Johnston Island (AF) 9117 -6.007402 -1.111859 1.825730 34 4)
Mt. John, New Zealand (AF) 9119 -4, 533650 0.761590 -4.407772 34 (4)
San Vito, Italy (AF) 9120 4,613757 1.485659 4. 132293 34 4)
Laser Stations (m)

GSFC, Maryland 7050 1. 130673 -4.831368 3.994112 2
Guam Island 7060 -5. 068960 3. 584106 1.458756 2
Salisbury, Australia 7803 -3. 939150 3. 467040 -3.613265 2
San Fernando, Spain 7804 5. 105606 -0.555251 3.769633 2
Haute Provence, France 7809 4.578352 0. 457957 4.403160 2
Haute Provence, France 7815 4.578371 0. 457950 4.403134 2
Dakar, Senegal 7820 5. 886271 ~1. 845666 1.615250 2
Olifantsfontein, South Africa 7902 5.056125 2.716511 -2.775784 2
Arequipa, Peru 7907 1.942775 -5. 804081 -1.796933 2
Mt. Hopkins, Arizona 7921 ~1.936781 -5.077701 3.331921 2
Natal, Braiil 7929 5.186461 ~3. 653856 - =0.654325 2
Dionysos, Greece 7930 4.595207 2.039446 3.912595 2
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2. Residuals for 4-day fit for satellite 6508901 from station 7907.
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Evolution of semimajor axis for satellite 6508901 during ISAGEX
periods IV and V.

84

108



202-151
| Ll | | 1 { ' 1 |

1

600

560

520 -

480 |-

440 |-

400 -

SEMIMAJOR AXIS a (Mm)

360 -

320 -

6.999280 ] I I I ] ] | | |
' 41175 79 183 187 191

EPOCH IN MODIFIED JULIAN DAYS

Figure 4. Evolution of semimajor axis for satellite 7010901 during ISAGEX period VII.
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The scatter for the remaining satellites was about 3 m, except for BE-B (6406401),

- which had so few data that its scatter was about 7 m.

The number of validated SAO laser points broken down by station is given in
Table 2. The ISAGEX periods covered by these data are listed in Table 3, where an
X indicates a validated time period (Note: in-between time periods were also validated

where possible).

Table 2. Number of validated SAO laser points.

Station
Satellite 7902 7907 7921 7929 7930 Total
6406401 - 12 13 5 - 30
6503201 3 162 3 41 33 242
6508901 3960 1408 164 528 106 6166
6701101 - - 9 3 88 100
6701401 - 235 412 43 109 799
6800201 937 466 137 276 42 1858
7010901 - 35 - 230 - 265
Total 4900 2318 738 1126 378 9460

Table 3. Validated ISAGEX periods.

I m v v VI v

Feb. 15-Mar. 8 Mar. 15-Apr. 15 Apr. 29-May 20 June 5-26 July 14-31 Aug. 1)}-31
Satellite MJD 4099741019 41035—41057 4107041092 4110741129 41146—41164 4117441195
6406401 X
6503201 4
6508901 X X X X X X X X X X X
6701101
6701401 X
6800201 X X X X X X X X
7010901 X X X X X
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As a result of our validation process, we can conclude the following:

A. The use of error signatures can be successfully employed to validate data.

By error signatures, we mean:

1) Large scatter in the data.
2) Inconsistent mean orbital elements.

3) Lack of systematic trends in the residuals.
To observe these signatures, we require more than 10 observations per pass.
B. The overall accuracy of the data is at least 1 m, and the noise level, 60 cm.

C. The overall accuracy of our geodesy is 10 m for Geos-type satellites, as can
be seen from the standard error of unit weight for orbital fits as reported by
Gaposchkin and Mendes (this volume). This accuracy confirms the evaluation of
Gaposchkin and Lambeck (1970, 1971). The weight for laser data was taken as 2 m.

D. With routine validation by use of Geos 1 data, a monitoring of a station's

reliability to the 10~ to 20-m level is possible.
REFERENCES

GAPOSCHKIN, E. M., and LAMBECK, K.
1970. 1969 Smithsonian Standard Earth (II). Smithsonian Astrophys. Obs.
Spec. Rep. No. 315, 93 pp.
1971. Earth's gravity field to the sixteenth degree and station coordinates from
satellite and terrestrial data. Journ. Geophys. Res., vol. 76,
pp. 4855-4883.
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ORBITAL ELEMENTS FROM ISAGEX DATA
E. M. Gaposchkin and G. M. Mendes

The process of data validation hinges on a consistent evolution of orbital elements
derived from the data. These elements are also useful for other analyses —e.g., of
zonal harmonics and earth tides — and are given here. Only those ISAGEX data
available at SAO for validation were used; the orbital elements will be revised when
the complete set of data has been processed. However, these orbits are an improve-
ment over previous ones, especially for Peole (7010901), the first geodetic satellite
with such a low inclination. This catalog of satellite data is similar to those previously
published by SAO (see, e.g., Miller, 1968). The orbital elements are mean elements
in the sense that the effects of the short-period perturbations due to the earth's gravity

field have been eliminated.

The SAO mean elements have been computed from observations covering several
days and are given in the form of a table. The successive sets of elements are essen-
tially independent of each other. Only entries that are considered satisfactory are

given. A missing epoch is due to insufficient data.
The times of epoch in the mean elements are reckoned in Julian Days. For
convenience, the number 2400000. 5 has been subtracted to provide an abbreviated

rotation, which we call "Modified Julian Days' or MJD.

The units of the orbital elements are degrees for angular quantities, megameters

for metric quantities, and revolutions for the mean anomaly.

The tabulated values of SAO mean elements are as follows:

line 1  Satellite designation, epoch, first and last dates, standard error of unit

weight, number of observations, and date the orbit was computed.

Preceding page blank
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line 2  Epoch.
|

line 3 ' w, argument of perigee and secular rate.

line 4 €, right ascension of the ascending node and secular rate.
line 5 L inclination.

line 6 e, eccentricity.

line 7 M, mean anomaly; n, mean motion; and higher polynomial term(s) as

appropriate.

These elements include the long-period perturbations evaluated with the zonal
harmonics as tabulated in Gaposchkin and Lambeck (1970, 1971); the short-period
perturbations due to the geopotential computed with the numerical values given in
Gaposchkin and Lambeck (1970, 1971); and the lunar perturbations with period 2>\(
computed as given by Gaposchkin (1966). The fundamental constants GM, ae, and

the velocity of light are as follows:

GM = 3.986013 X 1020 em® sec™®

ae =6.378155X 108 cm ,

10

¢ =2.997925% 1010 em sec™!

The station coordinates used are given in Gaposchkin and Mendes (this volume).

The reference system adopted results in the inclination and the argﬁment of
perigee referred to the true equator of date. The right ascension of the ascending
node is reckoned from the mean equinox of 1950. 0 along the corresponding mean
equator to the intersection with the moving true equator of date, and then along the
true equator of date. To transform the right ascension of the node to the mean

equinox of date, the following formula is used:

Q° = 2°(SAO) + 32508 X 107° (MJD - 33281)
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The orbital theory used defines the mean elements. The orbit-computation
program employed here is based on a set of formulas due to Aksnes (1970) for the
short-period oblateness perturbations. The relationship between the mean elements
from Von Zeipel's method as previously published and those by the Lie transform

method is given by Aksnes (this volume).
REFERENCES

AKSNES, K.
1970. A second-order artificial satellite theory based on an intermediate orbit.
NASA TR 32-1507, 34 pp.; also in Astron. Journ., vol. 76, pp. 1066-
1076.
GAPOSCHKIN, E. M.
1966. Orbit determination. In Geodetic Parameters for a 1966 Smithsonian
Institution Standard Earth, ed. by C. A. Lundquist and G. Veis,
Smithsonian Astrophys. Obs. Spec. Rep. No. 200, vol. 1, pp. 77-183.
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1970. 1969 Smithsonian Standard Earth (II). Smithsonian Astrophys. Obs.
Spec. Rep. No. 315, 93 pp.
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satellite and terrestrial data. Journ. Geophys. Res., vol. 76,
pp. 4855-4883.
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1968. Satellite orbital data, No. E-8. Smithsonian Astrophys. Obs. Spec.
Rep. No. 290, 27 pp.
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A NOTE ON THE RELATIONSHIP AND AGREEMENT BETWEEN
TWO SATELLITE THEORIES

K. Aksnes

We shall refer to the two theories under consideration as theory A (Gaposchkin,
Cherniack, Briggs, and Benima, 1971; Kozai, 1962) and theory B (Aksnes, 1970).
The main purpose here is to introduce some simple theoretical relations by means of

which, when the elements of one theory are given, we can predict those of the other.

Theory B differs from theory A in that the former makes use of 1) a reference
orbit that is a rotating ellipse (intermediate orbit) instead of a fixed ellipse, 2) Hill
variables instead of Delaunay variables, and 3) Hori's method in Lie series rather

than Von Zeipel's method in Taylor series.

In both theories, the periodic perturbations are expressed as deviations from a
mean orbit whose elements are semimajor axis a, eccentricity e, mean anomaly M,
inclination i, argument of perigee w, and right ascension of the ascending node .

To distinguish between the two sets of elements, we shall attach a subscript "0" to
those of theory A. Although, strictly speaking, the formulas introduced below are
valid only if the mean elements are constants or linear functions of time, they should
also be sufficiently good approximations if the mean elements are allowed to contain

long-period terms, as is the case with the SAO mean elements.
For convenience, M, w, and 2 have been so defined that
M=M w = wg, Q=QO . (D

However, internally, theory B utilizes a set of elements g and h that differ from «

and Q by the amount of rotation that the intermediate orbit is undergoing, viz.,

w=gtgy(E+M , fQ=h+gy(w+M , 2
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where

€51 = %Y a- 50 ) - l y (41 + 30c - 13504) + O(Ys) ’

Bgp = - 1% ¢ [8y + v2(7 - 33¢D)] + 0(yY) (3)

Here and in the following, we have used the notation

c=cosi , n= p/a3 , M= 1-e? ) G=ana ,

where a is measured in earth radii. The mean rates of change of MO’ Wgs and 2,

are given by

- L3 fi_ a2 _ 1 —ac2 4 1902
Mg =1 = 1) Yo 741 = 3¢ 32y0[10(1 6c5 + 13c)

2 4 2 2 4
- 5(56 - 1800 + 500) € + 16710 (1- 6c0 + 900)

(4)

2 4 2 3
- 15\/4 (3 - 300O + 35¢) eo]} + 0(y) ,

- _ 3 1 =2
wo——4n0y0{l 50 + y0[2(5+4300)(l 5c0)

2 4 2 2 4
+ (25 - 126¢ + 45c() ey - 24, (1 - 8¢ + 15¢,)

: 2 4 2 4 2 3
+ 20\(4 (3 - 3600 + 4900) + 45\/4 (1- 1400 + 2100)60]} +0(y) , (5)
and
o _3 fi_ L ' _ 2 _ 0 ral 2
2 =-5% %% !~ 16 Yo [4 40c) - (9 - 5¢y) e

+ 120 (1 - 3c2) - 5y, (3 - Te)(2 + 3e§)] } r oY) . 6)

140



These are invariant rates, and although expressed differently, they must be equal

individually to M, &, and €2, which are given by

M =n +I§—8- nyz n [8(1 - 602 + 504) - 5(b5 - 18c2 + 504) e2
- 15y,(3 - 30¢% + 3507 ez] rondy ()

1 4

g = -1 0y [44 - 3000* + (75 - 37807 + 1350% e + 60y, (3 - 36¢” + 49¢h) » @

+ 135y, (1 - 14c% + 2104) ez} + 0(\(3) ) J

and

Q=h+g, (0+M ,
32 )

h = -33—2ncy2 (2 - 1062 - 9 - 502) &% - 5y, (3 - 702)(2 + 392)] + 0(\(3)

Aksnes (1970) has shown that the elements a, e, and i relate to 249 €g» and iO

through the following equations:

11§, 1 2 1 2 2
2 a {l 2 Mo Yo (1 =3¢ * 32”0\(0[“67’0'(6*36"0) o

0
+ (45 + 54n,) cﬁ]% o) (10)
G=G, [1 +iy0'(1- 30(2)):] F oA (11)

and
c = co[l + % v (1 - 0(2))] + 04D . (12)
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While the third-order parts of equations (3) to (9) are available in the cited literature,
the terms beyond the second order in equation (10) and the first order in equations
(11) and (12) are not known.

For conversion between the two sets of mean elements, equations (1) and (10) to
(12) will suffice. In view of the importance of these equations, we have tested them
on the orbits of three actual satellites (Table 1). ' The first two sets of elements have
been derived by fitting theory A (line 1) and theory B (line 2) to a series of mostly
very accurate laser observations in the manner described by Gaposchkin and Mendes
(""Orbital Elements from ISAGEX Data, " this volume). The third line shows the ele-
ments predicted for theory B by means of the above-mentioned equations and the
elements on line 1. The agreement between the last two sets of elements is very good
and well within standard errors. The two theories agree on the computed ranges to a

few tenths of a meter.

Table 1. Comparison of mean elements for three satellites at epoch 41080. 0,

Satellite Theory a e i M " Q
A 1.1925238  0.0838280 39244049 33964344 194254493 134943624
6701401,
. B 1.1921616  0.0838340  39.43323  33.64344  194.54491  134.43625
261 observations
B (Pred.)  1.1921616 0.0838329  39.43321  33.64344  104.54493  134.43624
A 1.2656913 0.0721680  59.38145 294.47892  24.26520  265.05593
6508901, B 1.2657869  0.0721670  59.36859 294.47892  24.26519  265.05594
24] observations
B (Pred.)  1.2657869 0.0721664  59.36859 294.47892  24.26520  265.05593
A 1.2080431  0.0320070  105.80768  149. 20308 2.42648  301.93324 -
6800201,
. B 1.2083920  0.0320040  105.81605  149.20308 2.42648  301.93324
1386 observations .
B (Pred.)  1.2083920 0.0320045 105.81605  149.20308 2.42648  301.93324
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BIH Bureau International de 1'Heure
CNES Centre National d'Etudes Spatiales
EPSOC Earth Physics Satellite Observation Campaign
GOCC Geodetic Operations Control Center
GSFC Goddard Space Flight Center
IGY International Geophysical Year
ISAGEX International Satellite Geodesy Experiment
NASA National Aeronautics and Space Administration
NTU National Technical University, Athens, Greece
PMT Photomultiplier Tube
SAO Smithsonian Astrophysical Observatory
USNO United States Naval Observatory
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